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GENERATORS AND IRREDUCIBLE POLYNOMIALS OVER 
FINITE FIELDS 

DAQING WAN 

ABSTRACT. Weil's character sum estimate is used to study the problem of 
constructing generators for the multiplicative group of a finite field. An appli- 
cation to the distribution of irreducible polynomials is given, which confirms 
an asymptotic version of a conjecture of Hansen-Mullen. 

1. INTRODUCTION 

Let Fq be a finite field of q elements with characteristic p. For a positive in- 
teger m > 1, let Fqm be an extension field of Fq of degree m. One of the basic 
problems in computational finite field theory is to construct a set of generators for 
the multiplicative group F*m. Ideally, one would like to have a primitive element 
of Fqm. However, the construction (even testing) of a primitive root is at present 
deterministically difficult. In this paper, we consider three weaker questions about 
generators of finite fields. The first one is as follows. 

Question 1.1. For which pair (q, m), the multiplicative group Fqm is generated by 
the line Fq + a for every a with Fqm = Fq(a). 

This question also arises from several applications such as graph theory [Ch] and 
number theoretic algorithms [Le2]. For a given a with Fqm = Fq(a), define the 
difference graph G(m, q, a) to be the graph whose vertices are the elements of the 
multiplicative group F*mv where two elements pi and 32 are connected if and only if 
i1/02 = (a + a) for some a in the ground field Fq. This is a regular graph of degree 
q, i.e., each vertex is connected to exactly q other vertices. The difference graph 
is studied in [Ch] and more generally in [Li]. It is clear that the graph G(m, q, a) 
is connected if and only if F*m is generated by the line Fq + a. Thus, the graph 
G(m, q, a) is connected for every a with Fqm = Fq(a) if and only if Question 1.1 
has a positive answer for the pair (q, m). 

It is not hard to prove that if q > (m - 1)2, then the answer of Question 1.1 is 
positive and thus the graph G(m, q, a) is connected, see [Ch]. If qm - 1 (m > 1) 
is a (Mersenne) prime, the answer of Question 1.1 is clearly positive. Thus, we 
can assume that qm - 1 is not a prime. It is unknown if the bound q > (im - 1)2 

can be substantially weakened. In order to understand how close to the truth the 
bound q > (m - 1)2 might be, here we investigate when Question 1.1 has a negative 
answer. We have 
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Theorem 1.2. If qm - 1 has a divisor d > 1 such that 

(1.1) m > 2(qlogq d + logq(q + 1)), 

then the multiplicative group F*rrn is not generated by the line Fq + ca for some a 
with Fqm = Fq(Ca) 

This result shows that in some sense the bound q > (m - 1)2 is not too far from 
being sharp, although we still do not know what would happen for those m in the 
interval 

,/ + < m < 2(qlogqd +logq(q+ 1)). 

If q is odd, we can take d = 2 in Theorem 1.2. If q > 2, we can take d = (q - 1) > 1 
and the bound in (1.1) essentially reduces to the bound m > 2(q + 1) first observed 
by Lenstra. I owe entirely to Lenstra for suggesting to me the problem and the 
possibility of getting a better bound if qm - 1 has a small divisor d. If q = 2, no 
obvious factor of 2m - 1 is known unless m is a composite number. See section 3 
for a complete result of Lenstra in the case q = 2 and m composite. 

Our second question concerns the distribution of primitive normal elements. 
Even though the construction of a primitive element for F*m is difficult, Shoup 
constructed a subset of small size which contains a primitive element of F>m. More 
precisely, Shoup [Sh] showed that if a in Fqm is of degree m over Fq, then there 
is a monic irreducible polynomial g(T) in Fq[T] of degree at most [6logq m + 

C logq log ql such that g(a) is a primitive element of Fq>, where C is an absolute 
constant. If q is small, this result gives a polynomial size subset containing a 
primitive element and thus yields a polynomial time search algorithm in the sense 
of Shoup. A closely related result was obtained by Shparlinski [Shp, Theorem 2.4], 
see Corollary 4.3 for a unified description. A natural question is then to try to 
extend Shoup's result to primitive normal elements. Namely, 

Question 1.3. Let al be a normal element of Fqm over Fq. Is there an irreducible 
polynomial g(T) over Fq of small degree such that g(ce) is a primitive normal ele- 
ment of Fqm over Fq. 

In this question, we assumed that the given a is already normal. If a is not 
normal, then the answer can be negative. For example, if the minimal polynomial 
of a is Tm - aT - b, Newton's formula shows that for each 0 < i < m - 2, the 
power a' has trace zero. This implies that if g(T) is a polynomial over Fq of 
degree less than m - 1, then g(a) is not normal. Thus, we should assume that a 
is normal. This is not a severe restriction because a normal element can always 
be constructed deterministically in polynomial time, see Lenstra [Lel] or Bach- 
Driscoll-Shallit [BDS]. 

Theorem 1.4. There are absolute positive constants Ci and C2 such that if 

(1.2) q > Cim log2 m 

and if a is a normal element of Fqm over Fq, then there is a primitive normal 
element of the form g(ce), where g(T) is a monic irreducible polynomial over Fq of 
degree at most [6 logq m + C2 logq log ql. 

This result shows that Question 1.3 has a positive answer if q is suitably large 
compared to m. We do not know if the condition in (1.2) can be removed. 
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Our third question concerns the distribution of irreducible polynomials. Based 
on various tables, Hansen-Mullen [HM, Conjecture B] proposed the following con- 
jecture about uniform distribution of irreducible polynomials. We assume that the 
degree is at least three as the linear and quadratic cases are easy. 

Conjecture 1.5 (Hansen-Mullen). Let m and n be positive integers with m > 3 
and m > n > 1. For any given element a E Fq with a -7 0 if n = 1, there exists a 
monic irreducible polynomial over Fq of degree m such that the coefficient of Tn- 
is the given element a. 

Hansen-Mullen showed that their conjecture is true if n = 1 by a very simple 
argument: If oa is a primitive element of F*m, then the norm c = e(qm-1)/(q-1) is a 
primitive element of F* and thus one can write a = ck for some k < q -2 if a =? 0. 
The element oak is not in any proper subfield of Fqm and has norm equal to a. Thus, 
the conjecture is true if n = 1. By a result of Cohen [Co] on primitive elements, 
the conjecture is also true if n = m. By a recent result of Han [Hal]-[Ha2] on 
primitive roots, the conjecture is true if m is large and n m - 1. The following 
result confirms an asymptotic version of the Hansen-Mullen conjecture. 

Theorem 1.6. If either m > 36 or q > 19, then there is a monic irreducible 
polynomial in Fq[T] of the form g(T) Tm +amiTm-l + * +anTt +anT n-1 + 

+ aa1T + 1 with ani Ia, where m, n and a are as in the above conjecture. 

Actually, the number of possible exceptions is much smaller. It should be quite 
realistic to completely settle Conjecture 1.5 by more detailed arguments with per- 
haps some computer calculations. In our proof here, we use only crude estimates 
in favor of their simplicity. 

Acknowledgment. A portion of this paper (most of sections 2-3) is based on some 
unpublished notes of H. W. Lenstra, Jr. on L-functions over finite fields. I would 
like to thank him for valuable discussions and for allowing me to include some of 
his unpublished notes here. 

2. ESTIMATES OF CHARACTER SUMS 

In this section, we recall several forms of Weil's character sums arising from L- 
functions on the affine line. Our exposition of this section was greatly influenced 
by Lenstra's unpublished notes. 

Let Fq [T] be the polynomial ring in one variable over Fq. A multiplicative 
character for Fq [T] is a pair (x, f), where f E Fq [T] is a monic polynomial and 
X: (Fq[T]/fFq[T])* ) C* is a group homomorphism from the invertible elements 
of the residue class ring to the non-zero complex numbers. Though it is important 
to keep track of f , one often just refers to X as the character. For g E Fq [T], define 

X(g) fX (g mod f), if gcd (g, f) = 1 
0, otherwise. 

This defines a multiplicative function of the polynomial ring Fq [T]. The L-function 
L(X, t) associated to such a character is defined to be 

(2.1) L(X,t) = x 
9 
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where the summation is over all monic polynomials in Fq [T]. The Euler product 
form of L(X, t) is (by unique factorization) 

g irred. (1 - X(g)tdegg) 

(2.2) gird 

= exp(Z Sd d td), 
d=1 

where Sd (X) is the character sum 

(2.3) Sd(X) = Z k E x(gd/k)= 5 A(g)X(g) 
kid deg(g)=k,g irred. deg(g)=d 

and A(g) is the von Mangoldt function: A(g) is equal to deg(P) if g is a power of 
an irreducible polynomial P, and is otherwise equal to zero. In the case d = 1, we 
get the character sum 

(2.4) Si(X) = x(T - a). 
aEFq 

If X 74 1, one checks that L(X, t) is a polynomial of degree at most deg(f) - 1 with 
constant term 1. To see this, let n > deg(f). For each h (mod f), there are exactly 

n-deg(f) poyoil isuhta o q - monic polynomials g of degree n such that g h (mod f). Thus, for 
n > deg(f), 

S X(g) = qn-degf 5 X(h) =. 
deg g=n h(modf) 

This shows that for some positive integer r < deg f -1, one has L(X, t) = 

li1 (1 - pit), where the pi are complex numbers. In terms of character sums, 
one sees that for all positive integers d > 1, 

(2.5) Sd(X) 1 P2 Pr 

Weil's result on the Riemann hypothesis of L-functions gives (see [We] and [Le2]) 

Theorem 2.1 (Weil). (i) If X $8 1, then 

(2.6.1) Sd(X)I < (deg f - 1)qd/2 

(ii) If X =8 1 but x(Fq) = 1, then 

(2.6.2) 11 + Sd(X)I < (deg f - 2)qd/2. 

Note that in case (ii), the degree of f is automatically at least two since X $8 1 
but X(F*) = 1. Now, we use (2.6.1) to derive several interesting consequences. The 
first one was conjectured by Katz [Ka], observed by Lenstra to be a consequence of 
Theorem 2.1 by restricting the following character X to the cyclic subalgebra Fq[x] 
of A. 

Corollary 2.2. Suppose that we are given an arbitrary finite n-dimensional com- 
mutative Fq-algebra A, an element x E A, and a character X of the multiplicative 
group A* (extended by zero to all of A) which is non-trivial on Fq[x]. Then, 

(2.7) 1 X(a-x)| < (n-l)X. 
aEFq 
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Corollary 2.3. Let fi(T),... , fn(T) be n monic pairwise prime polynomials in 
Fq [T] whose largest squarefree divisors have degrees d1, . . . , dn. Let Xi, . .. , Xn be 
multiplicative non-trivial characters of the finite field Fq. Assume that for some 
1 < i < n, the polynomial fi(T) is not of the form g(T)`rd(Xi) in Fq[T], where 
ord(X) is the smallest positive integer d such that Xd 1. Then, we have the 
estimate 

n 

(2.8) X S (hf (X)) ... Xn (fn (x)) ?< (5 di 1)- . 
xEFq i=1 

If Xidt = 1 for all i, then the right side of (2.8) can be improved to 
n 

(Adi - 2)4/-+ 1. 
i=1 

Proof. By factoring the fi(T) if necessary, we may assume that the fi(T) are dis- 
tinct, monic and irreducible. Furthermore, there is at least one i such that Xi is 
non-trivial. Let f (T) = fi(T) ... fn(T). For each 1 < i < n, let (i be a root of the 
irreducible polynomial fi (T) in some extension field. Then, the residue class ring 
Fq[T]/(f) is isomorphic to the direct sum of the fields Fq[(il, where T is mapped 
to the vector (4I, . . ., n). Define a character X of Fq[T]/(f) as follows: For g(T) E 
Fq[T], define X(g) to be the product 7flnf- Xi( NormFq[(t]/Fq (g(t2))). Since the norm 
function from Fq[til to Fq is surjective, the character Xf (g) = Xi( Norm(g((i))) is 
non-trivial on Fq [T] if Xi is non-trivial on Fq. By the Chinese remainder theorem, 
the product character X = Jli xf is a non-trivial character on (Fq [T]/(f))*. One 
computes that 

X(a- T) = Xi (fi (a)) ... Xn (fn (a)), 

where a E Fq. Estimate (2.8) then follows from (2.7). If xdi = 1 for all i, then 
X(a) = IL Xi(adi) = 1 for all a E Fq and estimate (2.8) can be improved as stated. 

Weil's theorem can be used to give sharp estimates of certain types of incomplete 
character sums. Here we give the following example. Let fi (T), . .. , fn (T) be non- 
constant polynomials defined over the extension field Fqm. For 1 < i < n, let Xi be 
multiplicative non-trivial characters of the extension field Fqm. Define the following 
incomplete character sum 

(2.9) S(d; X) = 5 x(fi (a)) ... Xn(fn(a)) 
aEFq 

where the sum is over all a in the subfield Fq. Corollary 2.3 extends to this type 
of incomplete sums. El 

Corollary 2.4. Let the fi(T) for 1 < i < n be pairwise prime polynomials. Let D 
be the degree of the largest squarefree divisor of IlnJI fi(t). Suppose that for some 
1 < i < n, there is a root ti of multiplicity mi of fi (T) such that the character x" 
is non-trivial on the set NormFqm [(]/Fqm (Fq [ii]). Then, we have the estimate 

(2.10) IS(d; X)I < (mD - 1) 

Proof. The proof is similar to the proof of Corollary 2.3. By factoring the fi(T) 
if necessary, we may assume that the fi (T) for 1 < i < n are distinct and monic 
irreducible over Fqm. Furthermore, there is some 1 < i < n such that Xi is non- 
trivial on the set NormFqm [&]/Fqm (Fq [ti]). Let Fi (T) be the product of all distinct 
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conjugates of fi(T) over Fq. Then, the Fi(T) are defined and irreducible over the 
ground field Fq. Let f(T) - F1 (T) ... Fn (T). This is a squarefree polynomial of 
degree at most mD. Let (i be a root of fM(T). Define a multiplicative character 

Xf on (Fq[t]/(F)) by Xf(g) = H[=1 Xi(NormFqm[,t]/Fqm (g((i))). One checks that 
Xf (a - T) X171 xj(fi (a)). Using our assumption and the Chinese remainder 
theorem as in the proof of Corollary 2.3, we conclude that Xf is non-trivial and the 
corollary follows from (2.7). 0 

The following corollary gives a simple result on the number of subfield solutions 
of certain diophantine equations. 

Corollary 2.5. Let f (T) be a polynomial in Fqm [T] of degree D. Let d be a positive 
integer. Let Nf be the number of solutions of the equation yd = f (x) in Fqm such 
that x belongs to the subfield Fq. Assume that f (T) has a root , of multiplicity mo 
such that (mo, d) = 1 and NormFqm [,]/Fqm (Fq[c]) = Fqm. Then, 

(2.11) Nf - qI < (mD - 1)(d - 1) V. 

Proof. We use X to denote a multiplicative character of the extension field Fqm. 

Using Corollary 2.4, we deduce that 

Nf-q =- ZX(f(x)) 
Xd-1 xEFq 
x#1 

< (mD -1) (d -1) l. 

The corollary is proved. L 

Remark 2.6. As an example of Corollary 2.5, we may take f(T) to have a linear 
factor T - o of multiplicity one, where oa has degree m over Fq. Another example 
is to take f (T) to have a monic irreducible factor g(T) over Fqm of multiplicity one 
such that g(O) is a primitive element of Fqm. We note that Corollary 2.5 can be 
false without the assumption on (. An easy counterexample is to take f (T) = ,3T, 
where 3 is a d-th power non-residue in Fqm and (d, q - 1) = 1. 

A similar result on subfield solutions holds for the Artin-Schreier equation. 

Corollary 2.7. Let f(T) be a polynomial in Fqm[T] of degree D. Let Nf be the 
number of solutions of the equation yP - y - f (x) in Fqm such that x belongs to the 
subfield Fq. Assume that tr(f (T)) is not of the form r(T)P - r(T) + c in Fq(T), 
where tr is the trace from Fqm to Fq and it acts trivially on T. Then, 

(2.12) JNf - qJ < (D - 1)(p -1). 

Proof. Let t4p be a non-trivial additive character of Fp. Let g(T) be the polynomial 
tr(f (T)) of degree D defined over Fq. Then, 

Nf-q? < I E E Tp(a trFqm/Fp(f(X))) 

aGF* xEFq 

= S S E Tp(a trFq/Fp(g())) I 
aEF xEFq 

< (p -1) (D - I) , 

where the last inequality follows from Weil's well known estimate for additive char- 
acter sums. 
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For applications to the Hansen-Mullen conjecture, we give two estimates of char- 
acter sums over irreducible polynomials. Let X be a character of (Fq[T]/(f))*. For 
a positive integer d, define 

(2.13) SA(y) = S 

deg(g) =d 

where g runs over all monic irreducible polynomials of degree d over Fq. El 

Corollary 2.8. (i) If X + 1, then 

(2.14.1) 1Sd(x)I < d(deg (f) + 1)qd/2 

(ii) If X 4 1 but X(Fq) = 1, then 

(2.14.2) + SA(x)I < ddeg (f)qd/2 

Proof. Let ir' be the number of elements which are in a proper subfield of Fqd. 

Clearly, 

(2.15) Xd I (qd/2 + 5 qk) < d2q 
kid, k<d/2 

If X is non-trivial, then Weil's estimate (2.6.1) shows that 

S(x)I < ? (I Sd(X) I + 7rr) 

< I((deg (f) - 1)qd/2 + 2qd/2) 

= d(deg (f) + 1)qd/2. 

This proves (2.14.1). The proof of (2.14.2) is the same except that we need to 
use (2.6.2). LI 

A closely related character sum is to let g run over all irreducible polynomials 
with constant term 1 instead of monic irreducible polynomials. Thus, we define 

(2.16) Sd (X) = 5 X(9), 
deg(g)=d 

where g runs over all irreducible polynomials over Fq (not necessarily monic) of 
degree d with constant term 1. 

Corollary 2.9. Let X 7 1 but X(F^) = 1. For all d > 1, we have 

(2.17) ?+ S"'(X) < ddeg(f)qd/2. 

Proof. Since X(F*) = 1, we have 

V(g(T)) = X( g(T) 

for all monic irreducible polynomials g(T) ; T. If g(T) is a monic irreducible 
polynomial of degree d > 1, then g(T)/g(O) is an irreducible polynomial of degree 
d with constant term 1 and vice versa. Thus, 

Sdh p) = Sdc e b 

The proof is complete by (2.14.2). 
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3. MULTIPLICATIVE GROUPS GENERATED BY LINEAR EXPRESSIONS 

We now apply the character sum estimates of ?2 to study Question 1.1. We have 

Theorem 3.1. If qm - 1 has a divisor d > 1 such that 

m > 2(qlogq d + logq(q? 1)), 

then the multiplicative group F*m is not generated by the line Fq + ai for some oa 
with Fqm = Fq(a). 

Proof. Let d > 1 be a divisor of qm - 1. Let Nm (d) be the number of a in Fqm such 
that oa has degree m over Fq and oa + a is a d-th power in Fqm for every a C Fq. 
Let Am be the subset consisting of oa in Fqm which lies in a proper subfield of Fqm. 
To prove Theorem 3.1, it suffices to prove that Nm(d) > 0. 

A standard character sum argument shows that 

(3.1) Nm (d)=d E rj ( E X(a + a)) -d - rl ( E X(a + a)), 
oaEFqm acFq Xd=l acAm aEFq Xd=l 

where X(O) = 1 if X is the trivial character. The second sum is at most 2qm/2 by 
(2.15). Corollary 2.3 then implies that 

(3.2) iNm (d)- d q 1 )qm + 2qm/2 
dq d~q -1q/ 

This shows that 

dqNm(d) > qm - (dq - 1)(q - 1)qm/2 -2dqqm/2 

-qm (qdq-q + 1 + dq)qm/2 

> qm - d (q + I)qm/ 

The last number is non-negative if 

qm/2 > (q + 1)dq, namely, m > 2(qlogq d + logq(q + 1)). 

The theorem is proved. L 

In the case q = 2, no obvious factor of 2m - 1 is known unless m is a composite 
number. If q = 2 and m is composite, the following complete result is due to 
Lenstra. 

Theorem 3.2. If q = 2 and m is composite, then the multiplicative group Fqm is 
generated by the line Fq + ai for every oa with Fqm= Fq (a) if and only if m = 4 or 
m = 6. 

Proof. If q = 2, a detailed examination of the first sum in (3.1) gives a slightly 
better estimate: 

(3.3) Nm(d) d2 < (d21) 2m/2 + 2qm/2 

In order for Question 1.1 to have a negative answer, it suffices to have a proper 
divisor d of 2m - 1 satisfying the inequality 

(3.4) 2m > (d- 1)22m/2 + 2 . d22m/2, namely, 2m/2 > 3 d2- 2d + 1. 
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Since m is composite, let u be the smallest prime factor of m and write m = uk. 
Then d = 2U - 1 is a proper divisor of 21 - 1 and the second inequality in (3.4) 
becomes 

(3.5) 2uk/2 > 3(2u _ 1)2-2(2u-1) +1=3.22u-8 2u + 6. l 

For u = 2, inequality (3.5) is satisfied whenever k > 5. For u = 3, inequality 
(3.5) is satisfied whenever k > 5. For uH > 5, inequality (3.5) is satisfied whenever 
k > u > 5. Since u is the smallest prime factor of m, we are left only with the 
following cases m = 4,6,8,9. 

Case m = 8. We take d = 3 (a factor of 28 - 1) and use the method in the proof 
of Theorem 3.1. All proper subfields of F28 are contained in F24 and the last term 
of (3.3) can be improved to 24. By (3.3), 

28 22 
N8(d) > ---2 -24 > 0. 

32 32 

This shows that the theorem is true for q = 2 and m = 8. 
Case m = 9. All proper subfields of F29 are contained in F23. Let '3 E F23- F2. 

We claim that the polynomial g(T) = T3 + 3T2 + (3 + 1)T + 1 is irreducible over 
F23. One checks that g(0) = g(l) = 1. This and the irreducibility of g(T) shows 
that if oa is a root of g(T), then the norms of oa and oa + 1 from F23 to F23 are 1. 
Thus, the two elements oa and oa + 1 cannot generate F29. To prove the claim, it 
suffices to prove that the polynomial g(T) has no zeros in F23. Clearly, g(T) has 
no zeros in F2. If -y is an element of F23- F2, then -y satisfies either -y3 + ay + 1 = 0 
or y3 + y2 + 1 = 0. In the first case, if g(-y) = 0, then (-y2 + y) = 0 and we have a 
contradiction. In the second case, if g(-y) = 0, then (3 + 1)(_y2 + Ay) = 0 and again 
we have a contradiction. The claim is proved. 

Case m = 4. Since 24-1 = 3 5, if a and a + 1 do not generate F*4, both ai 
and oa + 1 must be primitive 5-th roots of unity. This means that both oa and o + 1 
satisfy the equation T4 + T3 + T2 + T + 1 = 0. This implies that oa(ae + 1) = 0 and 
we have a contradiction. Thus, the theorem is true for q = 2 and m = 4. 

Case m = 6. Since 26 _ 1 = 7 9, if ai is a 7-th power, then oa has to be a 
primitive 9-th root of unity. Since all primitive 9-th roots have trace zero to F22, 

oa + 1 cannot be a primitive 9-th root of unity. Thus, oa cannot be a 7-th power 

and the set {oa, oa + 1} generates the multiplicative group F*6. By symmetry, if 

oa + 1 is a 7-th power, the same argument works. If both oa and oa + 1 are a cubic 

power, then their norms to F22 are also a cubic power, which is necessarily 1. If 

g(T) = T3 + uT2 + vT + w is the irreducible polynomial of oa over F22, then both 
g(0) and g (1) are 1. That gives w = 1 and u+v = 1. But then u3 +u*u2 +vU+ 1 = 0 

(note that u, v C F22 -F2) shows that g(T) is still reducible. Thus, oa and a+I? can- 

not both be a cubic power. This implies that oa and ar+ 1 generate the multiplicative 

group of F26. Thus, the theorem is true for q = 2 and m = 6. The theorem is 

proved. 

To conclude this section, we include a more precise version of the bound q > 

(m - 1)2 mentioned in the introduction. Let d(m, q) be the smallest positive integer 
d such that for all oi with Fqm = Fq (a), each element /3 in Fqm can be expressed as 

a product of at most d elements from Fq + ai, that is, there are ai E Fq (1 < i < d) 
such that 3 = (ai + a,) ... (a + ad). If such a positive integer d does not exist, we 

define d(m, q) = oc. The number d(m, q) is simply the maximal diameter of the 

family of difference graphs G(m, q, a) parametrized by ai. 
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Theorem 3.3. Assume that q > (m - 1)2. Then 

d(m, q) < F2m + 4m log(m 1) 

where Fxl denotes the smallest integers > x. 

Proof. Let k be a positive integer. For /3 E F*m, let Nk(,3,ca) be the number of 
solutions of the equation 3 = (ai + a,) ... (a + ak), where the ai take values in the 
ground field Fq. Then, 

Nk(13, a) = , I E EZX1(3)X((+ al)*(c? ak)) 
aiEFq X 

(3.6) - qk ? 1 Zx1(/3)(Z X~cy~a))k 

qVM + qm -I E X1 (3)( X(ae + a) )k, 

X 1 aEFq 

where X runs over all multiplicative characters of Fqm. By Corollary 2.2, we deduce 
that 

qk k 
(3.7) Nk(/3, a)- m < 

In order for Nk (p3, ) > 0 for all 3, it suffices to have the inequality 
qk/2 > qm (m k. 

Solving this inequality, one gets 

k log q-2 log(m- 1) 

The theorem is proved. L 

Theorem 3.3 is essentially the same as Chung's diameter bound 

d(m, q) < ?2m + 4m log m 
Fmlogq -2 log(m1-)l. 

It is slightly better if q is very close to (m - 1)2. 

4. PRIMITIVE ELEMENTS AND PRIMITIVE NORMAL ELEMENTS 

An element oa C Fqm is said to be normal over Fq if the set {c , aq,... , a } 
forms a basis of Fqm over Fq. The element oa is said to be primitive if oa generates 
the multiplicative group of Fqm. The element oa is said to be a primitive normal 
element if it is both primitive and normal. A primitive normal element always 
exists, see Lenstra and Schoof [LS]. An interesting question is then to construct 
primitive normal elements. Since the construction of primitive elements is difficult, 
the construction of primitive normal elements will certainly not be easier. Motivated 
by Shoup's work on primitive elements, here we are interested in the following 
weaker question: Given a normal element oa of degree m over Fq, we hope to have 
a polynomial g(T) of small degree such that g(ai) is a primitive normal element of 
Fqm. The following result is a more precise version of Theorem 1.4. 

Theorem 4.1. Let Qm be the number of distinct prime factors of Tm - 1 over Fq. 
There are absolute positive constants Ci and C2 such that if 

q > CQmlog2m 
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and if a is a normal element of Fqm over Fq, then there is a primitive normal 
element of the form g(a), where g(T) is a monic irreducible polynomial over Fq of 
degree at most F6 logq m + C2 logq log ql. 

To prove this theorem, we need the following result of Shoup [Sh] on primitive 
elements of low degrees. 

Lemma 4.2. Let Wm be the number of distinct prime factors of qm - 1. Let a be 
an element of Fqm with degree m over Fq. For a positive integer k, let Pk (a) be the 
number of monic irreducible polynomials g(T) over Fq of degree k such that g(a) 
is primitive in Forms There are absolute positive constants Ci and C2 such that 

(4.1) Pk (a) > C, (logqW + 1)2 C2 Wmmq 

This result was proved by Shoup [Sh] for q = p using Weil's character sum 
estimate together with Iwaniec's shifted sieve. For general q, the proof is the same. 
Replacing q by qu, Lemma 4.2 gives 

Corollary 4.3. Let u be a positive integer. Let a be an element of Fqum with 
degree m over Fqu. For a positive integer k, let Pk,u (a) be the number of monic 
irreducible polynomials g(T) over Fqu of degree k such that 

Norm(g(a)) = g(0)(quanl)/(qrnl) 

is primitive in Fqm. There are absolute positive constants C1 and C2 such that 

quk 
Pk,U(a) > C, - -qC2W2uMquk/2 

(log wmu ? 1) 2 - ~~mqk2 

In fact, if g(a) is primitive in Fqum, then Norm(g(a)) is primitive in Fqm. Thus, 
Corollary 4.3 follows from Corollary 4.2. Taking k = 1, Corollary 4.3 reduces to 
Shparlinski's result [Shp]. Taking u = 1, Corollary 4.3 reduces to Lemma 4.2. 

Proof of Theorem 4. 1. We can assume that m > 1. The idea is to remove those 
elements g(a) that are not normal and then apply Shoup's lemma. Let a be the 
Frobenius automorphism o{() = 13q. The additive group Fqm is a cyclic Fq[T]- 
module under the action T(13) = oj(f). For an element 13 E Fqm 7 the order of 3 in 
Fq[T] is the monic polynomial r(T) of smallest degree such that r(T)13 = 0. Such 
an order is a monic factor of Tm - 1. An element 13 is normal if and only if the 
order of 13 is Tm - 1. Alternatively, an element 13 is not normal if and only if there 
is an irreducible factor s(T) of Tm - 1 (m > 1) over Fq such that (Tm - 1)/s(T) 
annihilates the element 13. 

Now, for a positive integer k, let M(k) be the set of elements of the form g(a), 
where g(T) is a monic polynomial in Fq[T] of degree k. We claim that M(k) 
contains at least qk - Qmqk-l normal elements. In fact, if s(T) is an irreducible 
factor of Tm - 1 and (ak 1,... , a2, ao) is a given (k - 1)-tuple of elements from 
Fq, then (Tm - 1)/s(T) annihilates at most one of the elements in the family 
ak + ak-lak-1 + * * * + ala + ao parametrized by a,, because a is normal. Thus, 
the polynomial (Tm - 1)/s(T) annihilates at most qk-l elements of M(k). Since 
Tm - I has Qm distinct irreducible factors, there are at most Qmqk-l non-normal 
elements in M(k) and the claim follows. 
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Let Nk (a) be the number of normal elements in M(k). To prove the theorem, it 
suffices to prove that Nk (a) + Pk (a) > qk. By the above claim and Shoup's lemma, 
we are led to solve the inequality 

qk 
(4.2) (qk - Qmqk-1) + (C w ? C 12 mqk/2) > qk 

Since wm = 0 (m log q), it suffices to solve 

qk 
(4.3) C' q 2> C Im (log2 q)qk/2 + Qmqk-i 

l(log m + log log q)2 

Inequality (4.3) clearly holds if 

(4.4) 
C/ k 

> 
-1 

qk 
/ 3 (log2 \k/2. 

2 l ?log )2 - q 201 (log m + log log q)2 qq 

The first inequality in (4.4) gives q > C'/Qm log2 m. This together with the second 
inequality in (4.4) gives k > 6logqm + Cj logqlog q. Since k is an integer, the 
theorem is proved. L 

Corollary 4.4. There are absolute positive constants Ci and C2 such that if 

q > Clm6 logC2 m 

and if oa is a normal element of Fqm over Fq, then there is a primitive normal 
element of Fqm of the form a + a, where a E Fq. 

5. DISTRIBUTION OF IRREDUCIBLE POLYNOMIALS 

Let m > n > 1 be positive integers and let a be a given element in Fq. The 
Hansen-Mullen conjecture concerns the existence of irreducible polynomials over 
Fq of the form g(T) = Tm + amiTm-l + + a1T + ao with an-1 = a. If n is 
small compared to m, the conjecture follows immediately from the following well 
known theorem on primes in an arithmetic progression by taking f (T) = Tn and 
4?(f) = qn-l(q - 1). For a related result on primes in arithmetic progressions, see 
Effinger and Hayes [EH]. 

Theorem 5.1. Let f (T) be a polynomial of degree n in Fq [T]. Let m be a positive 
integer and let h be a polynomial in Fq[T] which is relatively prime to f. Let irm(h) 
be the number of monic irreducible polynomials g in Fq[T] of degree m such that 
g h (modf). Then, 

(5.1) h7rm(h)- -I(f) < - (n + 1)qm/2 

where 1(f) is the number of elements in (Fq[T]/(f))* (the Euler function in func- 
tion fields). 

Proof. For a character X of (Fq[T]/(f))*, let X be its inverse or conjugate. Then, 
a standard character sum argument shows that 

(5.2) irm(h) = ) X) r (g)r-.(h). 
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Let rrm be the number of monic irreducible polynomials over Fq of degree m. Sep- 
arating the trivial character in (5.2) and applying estimate (2.14.1), we deduce 

J7rm(h)- j(-f) Tm J?< ( ( (n + 1)q . 

Using (2.15), we obtain 

[rm (h) -m (f) mT(f) { (If (f 1) (n + 1)qm/2 + 2. qm/2} 

< (n + )q/2 1)q 
m 

The proof is complete. a 

The above theorem can be applied only when the degree n of f (T) is small. If 
the degree n is close to m/2, then (5.1) gives no information. For the purpose of 
Hansen-Mullen conjecture, the desired irreducible polynomial g(T) can be chosen 
flexibly from many residue classes modulo Tn. A suitable large subset of these 
residue classes can be given a nice structure. An exploitation of structures among 
these residue classes would then permit us to get useful information for larger n. 
We now carry out this idea. Recall that a polynomial h(T) over Fq is called primary 
if it is a power of an irreducible polynomial r(T) over Fq. The degree of r(T) is 
denoted by A(h), the von Mangoldt function. Working with primary polynomials 
instead of irreducible polynomials will result in simpler estimates. 

We first assume that a 74 0. 
Let Hn-1 be the set of all monic primary polynomials over Fq of degree n - 1. 

Define the following weighted sum 

wa(mn) = E A(h) S 1, 
h~aH,_1 g-h (mod Tn) 

where g denotes a monic irreducible polynomial over Fq of degree m and A(h) is 
defined to be 1 if h is a non-zero constant. For the purpose of the Hansen-Mullen 
conjecture, we want to have wa(m, n) > 0. We now give an asymptotic formula 
for Wa(m, n). Recall that 7rm denotes the number of monic irreducible polynomials 
over Fq of degree m. 

Theorem 5.2. Let a 7& 0. (i) If n > 1, then 

|wa(mn) - 7m < -(n2 1)q(m+n-1)/2 

(ii) If n = 1, then 

jWa(i n1) <m -q ( 2qm/2 

Proof. Let y run over the qn-l (q - 1) characters of (Fq [T]/(Tn))* Weil's estimate 
(2.6.1) shows that if n > 1 and x y 1, then 

(5.3) I 5 A(h)x(h)J = Jx(a) 5 A(h)x(h)J < (n - 1)q 
hEaHn-1 hEHn-I 
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If X is trivial, then the above sum is simply qfll for n > 1. By the definition of 
wa(m, n) and a standard character sum argument, one deduces 

wa(ml n) A (h) E q ll(q-1) E X(g) -(h) 

(5.4) 1 

qn-l(q-1) Z(ZX(g))( X 
X g hcaHn-i 

where g runs over all monic irreducible polynomials over Fq of degree m. By (2.14.1) 
and (5.3), we conclude that for n > 1, 

lwa(m~)_) - < I(n+? )qm/2(nv-, )q(n-l)/2 

2 1)q(m+n-l)/2 
- 

n m I~ 

If n = 1, there are (q - 2) non-trivial characters X in (5.4) and the estimate in 
(5.3) becomes 1 instead of zero. The rest of the argument is the same. The proof 
is complete. D 

Corollary 5.3. Let a c Fq. Let m > 3 and m > n> 1. If 

qfn-n+l > (q -2n4 

then there is a monic irreducible polynomial g(T) over Fq of degree m such that the 
coefficient of Tn-1 is a. 

Proof. If n = 1, the result is always true by the simple argument of Hansen-Mullen. 
One can also use the second estimate of Theorem 5.2. We now assume that n > 1. 
By Theorem 5.2 and (2.15), 

m(q - 1)wa(m, n) - qm < (q - 1)(n 2 _ 1)q(m+n-1)/2 + 2qm/2 

< (q - l)n2q(m+n-1)/2 

where the exceptional case n = q = 2 needs a little extra treatment using the middle 
term of (2.15). The corollary follows. 

The above corollary implies that the Hansen-Mullen conjecture is true for a 7& 0 
if 1 < n < m - 1 and q is large compared to m. One can use the above method to 
derive a similar estimate in the case a = 0. We shall not do so. Instead, we shall 
derive an estimate which handles the case when m - n is small and by symmetry 
this also includes the case a = 0. For this purpose, we need to consider irreducible 
polynomials of degree m whose constant term is always 1, namely, irreducible poly- 
nomials of the form 1 + a1T + . ?+ amTm with am Z 0. 

For n > 2, let Gn-2 be the set of primary polynomials over Fq of degree n - 2 
with constant term 1. Thus, we are considering primary polynomials of the form 
+a1T?+- + an2Tn-2 with an-2 7& 0. For simplicity of estimates, we include the 

constant 1 as a special element of Gn-2 and define A(1) = 1. This special element 
corresponds to the monic primary polynomial Tn-2. For a fixed a E Fq, define the 
following weighted sum 

Wa(m, n)- 5 A(h) S 1, 
hcGn-2 g-h+aTn-1 (mod Tn) 
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where g denotes an irreducible polynomial over Fq of degree m with constant term 1. 
In the application to the Hansen-Mullen conjecture, we want to have Wa (m, n) > 0. 
The following is an asymptotic formula for Wa(n(m, n). O 

Theorem 5.4. Let a E Fq. (i) If n > 2, we have 

lWa(m, n) -- < 1(n - 
1)2q(m+n-2)/2 q m 

(ii) If n 2, we have 

tWa(m,2) - mJ < ?qm/2 

Proof. Let U1 be the set of polynomials of the form 1 + aIT + + an-ITn-I over 
Fq. The set U1 is an abelian group of order qfll under multiplication modulo Tn. 
The direct product of U1 with F* gives the full group (Fq [T]/(Tn))*. 

Let X run over the qn-l characters of the subgroup U1, namely, the characters 
of (Fq[T]/(T n))* which are trivial on F*. For h e Gn-2, one checks that 

h + aTn-I _ h(1 + aT n-) (mod Tn). 

Weil's estimate (2.6.2) shows that if X : 1 and n > 2, then 

(5.5) 

I A(h)x(h + aTn- )I = tX(l + aTn-1) A(h)X(h)t < (n -2)q 
hEGn-2 hEGn-2 

where we used the fact that X(F*) = 1 and our convention about the special element 
1 of Gn-2. If X is trivial, then the above sum is simply qn-2 for n > 2. 

By the definition of Wa(m,n) and a standard character sum argument, one 
deduces 

Wa(mn) = S A(h)5 n Ei x(g)i k(h+aT ) 

(5.6) 
hEGn-2 9 x 

-qfl (X(9))( S A(h) (h+aTn-)) 
x 9 hEGn-2 

where g runs over all irreducible polynomials over Fq of degree m with constant 
term 1. By (2.17) and (5.5), we conclude that if n > 2, then 

lWa(-, n) - m < 1 (nqm/2 + 1)(n-2)q(n-2)/2 q < 

< -(n - 1)2 (m+n-2)/2 

If n = 2, then (2.17) and (5.6) show that 

2) _ < (2qm/2 + 1) < 2qm/2 

The proof is complete. D 

Corollary 5.5. Let a E Fq. Let m > n > 2 be positive integers. If 
qm-n > n4 

then there is an irreducible polynomial g(T) over Fq of degree m with constant term 
1 such that the coefficient of Tn-I is a. 
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Proof. By Theorem 5.4, one obtains that for n > 2, 

ImqWa(m, n) - qtm < q(n - 1)2q(m+n-2)/2 + 2qm/2 

< qq(m+n-2)/2 2 n~(m+n)/2 

This proves that Wa(m, n) > 0 if qm-n > n4. If n = 2, Theorem 5.4 gives 

jmqWa(m, 2) - qmI < (2q + 2)qm/2 < q22qm/2 

This inequality shows that Wa (m, 2) > 0 if qm-2 > 24. The corollary is 
proved. ? 

Putting the above two corollaries together, we have 

Corollary 5.6. Let m > n > 1 be positive integers within > 3. Let a be a given 
element in Fq. (i) Assume a 7& 0. Then there exists a monic irreducible polynomial 
g(T) over Fq of degree m such that the coefficent of Tn-I in g(T) is equal to a if 

(5.7) either qm-n-l > n4 or qn-2 > (m-+ 2)4. 

(ii) Assume a = 0 and n > 1. Then there exists a monic irreducible polynomial 
g(T) over Fq of degree m such that the coefficent of T n- in g(T) is equal to a if 

(5.8) either qm-n > n4 or q n-2 > (m- + 2)4. 

Proof. A monic polynomial of the form g(T) = Tm + amiTm-l + + anTn + 
... + ao is irreducible of degree m (> 1) if and only if the reciprocal polynomial 
g*(T) = 1 + am-IT + . + aoTm is irreducible of degree m. The coefficient of 
T n- in g(T) corresponds to the coefficient of Tm-n+l in g*(T). Corollaries 3.3 
and 3.5 imply the result for the case a 7/( 0. If a = 0, the transformation g(T) -* 

g*(T)/g(O) shows that there is a monic irreducible polynomial of degree m with 

an-I = 0 if and only if there is a monic irreducible polynomial of degree m with 
am-n+l = 0. Corollary 3.5 then gives the result for the case a = 0. The proof is 
complete. D 

Corollary 5.7. Let m > n > 1 be positive integers with m > 3. Let a be a given 
element in Fq with a 7/( 0 if n = 1. Then, there exists a monic irreducible polynomial 
g(T) over Fq of degree m such that the coefficent of T n- in f (T) is equal to a if 

(5.9) qm-3 >(m+2 )8. 
-2 

Proof. Multiplying the two inequalities in (5.7) and (5.8), one sees that it suffices 
to have 

qm-3 >n4(m-n+2)4. 

The worst case occurs when n = m - n + 2 = (m + 2)/2. The proof is complete. D 

Inequality (5.9) is satisfied for all prime powers q if m is large. It is also satisfied 
for all m > 3 if q is large. To prove that there are only finitely many cases left, 
there remains the case m = 3 and n > 1. This case can be easily excluded by a 
simple argument as follows. Let f (T) be a cubic monic polynomial over Fq. It is 
easy to see that there is a monic irreducible cubic polynomial over Fq in the family 
f (T) + t parametrized by t, if and only if f (T) is not a permutation polynomial 
over Fq. Actually, there are at least (q - 1)/3 irreducible cubic polynomials in the 
family f (T) + t if f (T) is not a permutation polynomial over Fq, see [Wa]. Thus, 
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to have an irreducible polynomial of the form T3 + aT2 + bT + c with given a, we 
can just choose b E Fq such that T2 + aT + b has a non-zero root. This can clearly 
be done. Similarly, to have an irreducible polynomial of the form T3 + bT2 + aT + c 
with given a, it suffices to choose b E Fq such that T2 + bT + a has a non-zero root. 
Again, this can clearly be done. 

Corollary 5.8. If either q > 19 or m > 36, then the Hansen-Mullen conjecture is 
true. 

Proof. If q = 2, Corollary 5.3 shows that the first inequality in (5.7) can be im- 
proved. The worse case occurs in (5.8). Thus, it suffices to have 

2m-2 > (m+2)8 

This inequality is satisfied if m > 36. If q > 3, inequality (5.9) is satisfied for 
m > 22. 

Next we turn to proving the result for q > 19. We may assume that m > 4. If 
m > 7, inequality (5.9) is satisfied if q > 21 and hence if q > 19 since q is a prime 
power. There remain the three cases 4 < m < 6. We will be implicitly using the 
transformations occurring in the proof of Corollary 5.6. Part (ii) of Theorem 5.2 
and part (ii) of Theorem 5.4 show that the conjecture is true for all m > 4 if n = 1 
or if n = m. Corollary 5.6 covers the case n = 2 if q > 16. The first estimate of 
Theorem 5.4 covers the case n = m - 1 if q > 17. This takes care of all possibilities 
if m = 4 and q > 19. For m = 5, there remains the possibility that n = 3 and 
a 7& 0. In this case, a direct estimate of (5.4) using the fact that there are (q5 - q)/5 
monic irreducible polynomials of degree 5 gives the following better bound: 

q5 1 

tWa(5, 3) -< -(2q5/2 + q)2q. 

We need to have 

q5 _ q > (2q5/2 + q)2q(q - 1). 

The last inequality is satisfied if q > 18. For m = 6, there remain the two possibil- 
ities that n = 3 (a 7& 0) and n = 4. For m = 6 and n = 3, Corollary 5.6 shows that 
the conjecture is true if q > 9. For m = 6 and n = 4, Corollary 5.6 shows that the 
conjecture is true if q > 16. The proof is complete. D 
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